Dirichlet-to-Neumann Map Method for Analyzing Crossed Arrays of Circular Cylinders

نویسندگان

  • Yumao Wu
  • Ya Yan Lu
چکیده

An efficient and accurate computational method is developed for analyzing finite layers of crossed arrays of circular cylinders, including woodpile structures as special cases. The method relies on marching a few operators (approximated by matrices) from one side of the structure to another. The marching step makes use of the Dirichlet-to-Neumann (DtN) maps for two-dimensional unit cells in each layer where the structure is invariant in the direction of the cylinder axes. The DtN map is an operator that maps two wave field components to their normal derivatives on the boundary of the unit cell, and they can be easily constructed by vector cylindrical waves. Unlike existing numerical methods for crossed gratings, our method does not require a discretization of the structure. Compared with the multipole method that uses vector cylindrical wave expansions and scattering matrices, our method is relatively simple, since it does not need sophisticated lattice sums techniques. c © 2009 Optical Society of America

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves

For finite two-dimensional (2D) photonic crystals given as periodic arrays of circular cylinders in a square or triangular lattice, we develop an efficient method to compute the transmission and reflection spectra for oblique incident plane waves. The method relies on vector cylindrical wave expansions to approximate the Dirichlet-to-Neumann (DtN) map for each distinct unit cell, and uses the D...

متن کامل

Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice

An efficient numerical method is developed for computing the transmission and reflection spectra of finite two-dimensional photonic crystals composed of circular cylinders in a triangular lattice. Our method manipulates a pair of operators defined on a set of curves and it remains effective when the radius of the cylinders is larger than √ 3/4 of the lattice constant — a condition where differe...

متن کامل

Analyzing second harmonic generation from arrays of cylinders using Dirichlet-to-Neumann maps

We develop an efficient numerical method for analyzing second harmonic generation (SHG) in two-dimensional photonic crystals composed of nonlinear circular cylinders embedded in a linear background medium. Instead of solving the governing inhomogeneous Helmholtz equation for the second harmonic wave in the entire structure directly, we define and solve a locally generated second harmonic field ...

متن کامل

Improved Dirichlet-to-Neumann map method for scattering by circular cylinders on a lattice.

A simple model for two-dimensional photonic crystal devices consists of a finite number of possibly different circular cylinders centered on lattice points of a square or triangular lattice and surrounded by a homogeneous or layered background medium. The Dirichlet-to-Neumann (DtN) map method is a special method for analyzing the scattering of an incident wave by such a structure. It is more ef...

متن کامل

Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells.

The periodicity of photonic crystals can be utilized to develop efficient numerical methods for analyzing light waves propagating in these structures. The Dirichlet-to-Neumann (DtN) operator of a unit cell maps the wave field on the boundary of the unit cell to its normal derivative, and it can be used to reduce the computation to the edges of the unit cells. For two-dimensional photonic crysta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009